Differences between a Microprocessor and a Microcontroller
Himadri Barman

A microprocessor (abbreviated as uP or uP) is a computer electronic component made from
miniaturized transistors and other circuit elements on a single semiconductor integrated
circuit (IC) (microchip or just chip). The central processing unit (CPU) is the most well known
microprocessor, but many other components in a computer have them, such as the
Graphics Processing Unit (GPU) on a video card. In the world of personal computers, the
terms microprocessor and CPU are used interchangeably. At the heart of all personal
computers and most workstations sits a microprocessor. Microprocessors also control the
logic of almost all digital devices, from clock radios to fuel-injection systems for
automobiles.

Microcontroller is a computer-on-a-chip optimised to control electronic devices. It is
designed specifically for specific tasks such as controling a specific system. A microcontroller
(sometimes abbreviated puC, uC or MCU) is basically a specialized form of microprocessor
that is designed to be self-sufficient and cost-effective. Also, a microcontroller is part of an
embedded system, which is essentially the whole circuit board.
An embedded system is a computer system designed to perform one or a few dedicated
functions often with real-time computing constraints. It is embedded as part of a complete
device often including hardware and mechanical parts.

Examples of microcontrollers are Microchip's PIC, the 8051, Intel's 80196, and Motorola's
68HCxx series. Microcontrollers which are frequently found in automobiles, office machines,
toys, and appliances are devices which integrate a number of components of a
microprocessor system onto a single microchip:

e The CPU core (microprocessor)

e Memory (both ROM and RAM)

e Some parallel digital I/0

The microcontroller sees the integration of a number of useful functions into a single IC
package. These functions are:
e The ability to execute a stored set of instructions to carry out user defined tasks.
e The ability to be able to access external memory chips to both read and write data
from and to the memory.

The difference between the two is that a microcontroller incorporates features of
microprocessor (CPU, ALU, Registers) along with the presence of added features like
presence of RAM, ROM, I/O ports, counter, etc. Here a microcontroller controls the
operation of a machine using fixed programs stored in ROM that doesn't change with
lifetime.

From another view point, the main difference between a typical microprocessor and a micro
controller leaving there architectural specifications is the application area of both the
devices. Typical microprocessors like the Intel Core family or Pentium family processors or
similar processors are in computers as a general purpose programmable device. In its life

Downloaded from http://himadri.cmsdu.org 1

period it has to handle many different tasks and programs given to it. On the other hand a
micro controllers from 8051 family or PIC family or any other have found there applications
in small embedded systems like some kind of robotic system or a traffic signal control
system. Also these devices handle same task or same program during there complete life
cycle. (Best example is of traffic signal control system).The other difference is that the micro
controllers usually has to handle real time tasks while on the contrary the microprocessors
in a computer system may not handle a real time task at all times.

A Dossier on 8051 Memory

The 8051 has three very general types of memory. The memory types are illustrated in the
following graphic. They are: On-Chip Memory, External Code Memory, and External RAM.

-
I

Micro

Internal
Bt Il

On-Chip Memory refers to any memory (Code, RAM, or other) that physically exists on the
microcontroller itself. On-chip memory can be of several types, but we'll get into that
shortly.

External Code Memory is code (or program) memory that resides off-chip. This is often in
the form of an external EPROM.

External RAM is RAM memory that resides off-chip. This is often in the form of standard
static RAM or flash RAM.

Code Memory

Code memory is the memory that holds the actual 8051 program that is to be run. This
memory is limited to 64K and comes in many shapes and sizes: Code memory may be found
on-chip, either burned into the microcontroller as ROM or EPROM. Code may also be stored
completely off-chip in an external ROM or, more commonly, an external EPROM. Flash RAM
is also another popular method of storing a program. Various combinations of these
memory types may also be used--that is to say, it is possible to have 4K of code memory on-
chip and 64k of code memory off-chip in an EPROM.

When the program is stored on-chip the 64K maximum is often reduced to 4k, 8k, or 16k.
This varies depending on the version of the chip that is being used. Each version offers

Downloaded from http://himadri.cmsdu.org 2

specific capabilities and one of the distinguishing factors from chip to chip is how much
ROM/EPROM space the chip has.

However, code memory is most commonly implemented as off-chip EPROM. This is
especially true in low-cost development systems and in systems developed by students.

External RAM
As an obvious opposite of Internal RAM, the 8051 also supports what is called External RAM.

As the name suggests, External RAM is any random access memory which is found off-chip.
Since the memory is off-chip it is not as flexible in terms of accessing, and is also slower. For
example, to increment an Internal RAM location by 1 requires only 1 instruction and 1
instruction cycle. To increment a 1-byte value stored in External RAM requires 4 instructions
and 7 instruction cycles. In this case, external memory is 7 times slower!

What External RAM loses in speed and flexibility it gains in quantity. While Internal RAM is
limited to 128 bytes (256 bytes with an 8052), the 8051 supports External RAM up to 64K.

On-Chip Memory

As mentioned at the beginning of this chapter, the 8051 includes a certain amount of on-
chip memory. On-chip memory is really one of two types: Internal RAM and Special Function
Register (SFR) memory. The layout of the 8051's internal memory is presented in the
following memory map:

E‘m Deascription
#8 |refrifRz2|R3RafrsfR6]R? | Reg. Bank 8
a8 Reg. Bank 1
i8 Reg. Bank 2
i8 Reg. Bank 3
28 [osfesli0)is]2el28f30d38 | Bite em-aF
28 j40)as)se)se)colesl e)7e] Bits 4B87R
Jja

G 1 U= RAM

?E‘.:’.rtaac]{ E?‘ace f;:;"l

<88 bhytes, 38h—"7Fh>

4 o
g8 Special Function ’

Registers (SPRs> EFR=

¢88h - FFh>

As is illustrated in this map, the 8051 has a bank of 128 bytes of Internal RAM. This Internal
RAM is found on-chip on the 8051 so it is the fastest RAM available, and it is also the most
flexible in terms of reading, writing, and modifying its contents. Internal RAM is volatile, so
when the 8051 is reset, this memory is cleared.

Downloaded from http://himadri.cmsdu.org 3

The 128 bytes of internal ram is subdivided as shown on the memory map. The first 8 bytes
(O0h - 07h) are "register bank 0". By manipulating certain SFRs, a program may choose to
use register banks 1, 2, or 3. These alternative register banks are located in internal RAM in
addresses 08h through 1Fh. They "live" and are part of internal RAM.

Bit Memory also lives and is part of internal RAM. Keep in mind that bit memory actually
resides in internal RAM, from addresses 20h through 2Fh.

The 80 bytes remaining of Internal RAM, from addresses 30h through 7Fh, may be used by
user variables that need to be accessed frequently or at high-speed. This area is also utilized
by the microcontroller as a storage area for the operating stack. This fact severely limits the
8051s stack since, as illustrated in the memory map, the area reserved for the stack is only
80 bytes--and usually it is less since this 80 bytes has to be shared between the stack and
user variables.

Register Banks

The 8051 uses 8 "R" registers which are used in many of its instructions. These "R" registers
are numbered from 0 through 7 (RO, R1, R2, R3, R4, R5, R6, and R7). These registers are
generally used to assist in manipulating values and moving data from one memory location
to another. For example, to add the value of R4 to the Accumulator, we would execute the
following instruction:

ADD A,R4

Thus if the Accumulator (A) contained the value 6 and R4 contained the value 3, the
Accumulator would contain the value 9 after this instruction was executed.

However, as the memory map shows, the "R" Register R4 is really part of Internal RAM.
Specifically, R4 is address 04h. This can be see in the bright green section of the memory
map. Thus the above instruction accomplishes the same thing as the following operation:

ADD A,04h

This instruction adds the value found in Internal RAM address 04h to the value of the
Accumulator, leaving the result in the Accumulator. Since R4 is really Internal RAM 04h, the
above instruction effectively accomplished the same thing.

But watch out! As the memory map shows, the 8051 has four distinct register banks. When
the 8051 is first booted up, register bank 0 (addresses 00h through 07h) is used by default.
However, your program may instruct the 8051 to use one of the alternate register banks;
i.e., register banks 1, 2, or 3. In this case, R4 will no longer be the same as Internal RAM
address 04h. For example, if your program instructs the 8051 to use register bank 3, "R"
register R4 will now be synonymous with Internal RAM address 1Ch. We can switch to other
banks by use of the PSW (program status word) register. [This is the fundamental concept
of Switching of Register Banks]

Downloaded from http://himadri.cmsdu.org 4

The concept of register banks adds a great level of flexibility to the 8051, especially when
dealing with interrupts. However, always remember that the register banks really reside in
the first 32 bytes of Internal RAM.

Bit Memory

The 8051, being a communications-oriented microcontroller, gives the user the ability to
access a number of bit variables. These variables may be either 1 or 0.

There are 128 bit variables available to the user, numberd 00h through 7Fh. The user may
make use of these variables with commands such as SETB and CLR. For example, to set bit
number 24 (hex) to 1 you would execute the instruction:

SETB 24h
It is important to note that Bit Memory is really a part of Internal RAM. In fact, the 128 bit
variables occupy the 16 bytes of Internal RAM from 20h through 2Fh. Thus, if you write the
value FFh to Internal RAM address 20h youve effectively set bits 00h through 07h. That is to
say that:

MOV 20h,#0FFh

is equivalent to:

SETB 00h
SETB 01h
SETB 02h
SETB 03h
SETB 04h
SETB 05h
SETB 06h
SETB 07h

As illustrated above, bit memory isn’t really a new type of memory. Its really just a subset of
Internal RAM. But since the 8051 provides special instructions to access these 16 bytes of
memory on a bit by bit basis it is useful to think of it as a separate type of memory.
However, always keep in mind that it is just a subset of Internal RAM--and that operations
performed on Internal RAM can change the values of the bit variables.

Bit variables 00h through 7Fh are for user-defined functions in their programs. However, bit
variables 80h and above are actually used to access certain SFRs on a bit-by-bit basis. For
example, if output lines P0.0 through P0.7 are all clear (0) and you want to turn on the P0.0
output line you may either execute:

MOV PO,#01h

or you may execute:

SETB 80h

Downloaded from http://himadri.cmsdu.org 5

Both these instructions accomplish the same thing. However, using the SETB command will
turn on the P0.0 line without effecting the status of any of the other PO output lines. The
MOV command effectively turns off all the other output lines which, in some cases, may not
be acceptable.

Special Function Register (SFR) Memory

Special Function Registers (SFRs) are areas of memory that control specific functionality of
the 8051 processor. For example, four SFRs permit access to the 8051s 32 input/output
lines. Another SFR allows a program to read or write to the 8051s serial port. Other SFRs
allow the user to set the serial baud rate, control and access timers, and configure the 8051s
interrupt system.

When programming, SFRs have the illusion of being Internal Memory. For example, if you
want to write the value "1" to Internal RAM location 50 hex you would execute the
instruction:

MOV 50h,#01h

Similarly, if you want to write the value "1" to the 8051s serial port you would write this
value to the SBUF* SFR, which has an SFR address of 99 Hex. Thus, to write the value "1" to
the serial port you would execute the instruction:

MOV 99h,#01h

As you can see, it appears that the SFR is part of Internal Memory. This is not the case.
When using this method of memory access (its called direct address), any instruction that
has an address of 00h through 7Fh refers to an Internal RAM memory address; any
instruction with an address of 80h through FFh refers to an SFR control register.

This note is prepared taking help from various sources in the Web

! SBUF: Serial Data Buffer Register. May also mean Serial Data Buffer which is an assembly language directive
You may also come across SCON which means Serial Port Control Register

Downloaded from http://himadri.cmsdu.org 6

